Yakima Regional Wastewater Treatment Plant Class II Inspection, October 5-7, 1992

by Guy Hoyle-Dodson

Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Toxics, Compliance, and Ground Water Investigations Section Olympia, WA 98504-7710

> Water Body No.: WA-37-1040 Segment No.: 18-37-02

· · · · · · · · · · · · · · · · · · ·				

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INTRODUCTION	1
SETTING	1
Domestic Wastewater Treatment	
Industrial Wastewater Treatment	5
PROCEDURE	5
QUALITY ASSURANCE\QUALITY CONTROL	6
Sampling	
General Chemistry Analysis	
Metals Analysis	
VOAs, BNAs, and Pesticides/PCBs	
Bioassays	
RESULTS AND DISCUSSION	7
Domestic Wastewater Treatment	
Flow Measurements	
NPDES Permit Compliance	
General Chemistry/Plant Operation	
Sample Splits	
Organics/Metals	
Bioassays	
Sludge	
Industrial Wastewater Treatment	
General Chemistry	
Organics/Metals	
CONCLUSIONS AND RECOMMENDATIONS	23
Domestic Wastewater Treatment	
Flow Measurement	
NPDES Permit Compliance	
General Chemistry/Plant Operation	
Sample Splits	
Organics/Metals	
Bioassays	
Sludge	
DIUUED	44

	Page
Industrial Wastewater Treatment	
General Chemistry	
Organics/Metals	
REFERENCES	

ABSTRACT

A Class II Inspection was conducted October 5-7, 1992, at the Yakima Regional Wastewater Treatment Plant. The Yakima facility provides secondary treatment of domestic wastewater for the City of Yakima and adjoining urban areas. It also applies untreated wastewater from several food processing plants to sprayfields located along the Yakima River. Inspection data found that Yakima was providing adequate treatment for most pollutants limited by the NPDES permit. Total ammonia and fecal coliform effluent concentrations were of some concern. Influent loading for BOD₅ exceeded monthly average design criteria included in the NPDES permit. Influent flow exceeded 85% of design criteria. Revising plant criteria to reflect recent plant upgrades or submitting a plan and schedule to the Department of Ecology for the maintenance of adequate treatment is recommended. Differences in the influent wastewater quality of the plant's two influent channels were noted and it was suggested that Yakima evaluate the effectiveness of their current practice of sampling only one of those channels for NPDES permit parameters. All effluent organic compound concentrations were within EPA water quality criteria. Effluent concentrations of copper, lead, and silver exceeded EPA chronic water quality criteria for receiving waters. Effluent bioassays provided evidence of toxic effects. The toxicity may have been related to chlorine residual. Sodium adsorption ratio, pH, and coliform concentrations in industrial wastewater were of concern for sprayfield application. inspection identified high fecal coliform counts and small to moderate organic/metal concentrations in the industrial influent.

INTRODUCTION

A Class II Inspection was conducted at the Yakima Regional Wastewater Treatment Plant on October 5-7, 1992. Guy Hoyle-Dodson and Marc Heffner, environmental engineers for the Washington State Department of Ecology (Ecology) Toxics, Compliance, and Groundwater Investigations Section, conducted the inspection. Phelps Freeborn, permit manager for the Washington State Department of Ecology Central Regional Office, requested the inspection; and provided both assistance during the inspection and information on the STP's treatment and compliance history. Assisting on-site was plant process control supervisor Joe Schnebly. Arnold Swain, swing shift chief operator; Bruce Bates, assistant superintendent; and Chris Waarvic, plant director provided additional information at various stages of the inspection.

The Yakima Regional STP provides secondary treatment of domestic wastewater for the city of Yakima and several adjoining urban areas. Effluent discharges to the Yakima River. The facility also provides sprayfield application for wastewater from several industrial food processing plants. The State of Washington regulates the Yakima STP through NPDES permit WA-002402-3, (expiration date: June 29, 1993).

Ecology conducted the Class II Inspection to identify potential areas of concern and to assist in writing a new permit. Specific objectives include:

- 1. verify compliance with NPDES permit limits,
- 2. characterize wastewater toxicity with chemical scans and bioassays,
- 3. characterize sludge toxicity with chemical scans,
- 4. evaluate treatment plant performance and plant design,
- 5. assess facility loading, and
- 6. assess permittee's self-monitoring through split sample analysis.

SETTING

Domestic Wastewater Treatment

The Yakima Regional Wastewater Treatment Plant is located in Yakima County, Washington, on the east side of the city of Yakima (Figure 1). The facility uses trickling filters followed by an activated sludge process. Sludge is anaerobically digested.

The plant has evolved over 35 years from a simple trickling filter plant serving only the city of Yakima to its present configuration as a regional wastewater treatment facility. In 1983 aeration basins were added to upgrade the facility's activated sludge treatment capacity. The plant also improved its anaerobic sludge digestion system to enhance sludge reduction and disposal. More recently, an odor reduction system was added which includes a plant-wide gas collection system, domes on the trickling filter, and gas treatment towers. During the inspection a new chlorination/dechlorination system was just beginning operation.

Three main domestic influent lines convey wastewater to the plant's influent diversion structure. Only minimal mixing occurs in the diversion structure before the flow is split into two separate channels. Visual inspection indicated that the sewage quality in these two channels differ from one another. During periods of lower flow only one channel may be used.

Each channel includes mechanical bar screens, an aerated degritter, and a Parshall flume (Figure 2). Solids from the degritters are dewatered and trucked to landfills. After the degritters, operators periodically add septage to the eastern channel. Meters in each channel measure instantaneous and totalized flows at the Parshall flumes. The channels are joined at a flow splitter prior to the primary clarifiers, although mixing is minimal. Flow from each side of the flow splitter is directed into one of two pairs of primary clarifiers.

After sedimentation the primary clarifier effluents flow to a common wetwell. Approximately 1 MGD of primary clarifier effluent was pumped directly into the plant's activated sludge aeration basins to optimize aeration basin loading. The balance of the flow is routed to single stage recirculating trickling filters. Two trickling filter towers are operated in parallel.

The trickling filters use a rock medium with a forced air aeration system. The installations are covered by domes for odor control. The odor reduction system collects gases from the domes as well as from several other points throughout the plant. Scrubbing towers treat the gases with NaOH and Cl₂. Scrubber water overflow is directed back to the headworks. An intermediate degritter follows the trickling filter. This is principally used to remove snails if they become a problem, although few, if any, snails inhabited the trickling filters at the time of the inspection. The degritter returns grit slurry to the headworks. An optional clarifier following the trickling filters was not in use at the time of the inspection.

Flow from the trickling filters is next routed to the activated sludge aeration basins. During the inspection two of the four aeration basins were in use. Aeration is by fine bubble diffusers. In addition to the trickling filter effluent and the primary clarifier effluent diversion, the basins also accept the wastewater from dewatered sludge. Groundwater from beneath the basins was also pumped into the aeration basins. The operator reported that this was done to stabilize the soil beneath the basins.

From the aeration basins, effluent is discharged to two secondary clarifiers. Secondary clarifier effluent is sent to a chlorine contact chamber for disinfection. During the inspection operators controlled chlorination by a flow proportional system. A chlorine delivery system with direct measurement of effluent chlorine concentrations had been installed, but was not functioning during the inspection. Dechlorination with SO_2 is the final step before effluent discharges to the Yakima River via a submerged pipe.

The sludge handling system consisted of: 1) a dissolved air floatation (DAF) thickener, 2) primary and secondary anaerobic digesters, 3) sludge centrifuges, 4) drying beds, and 5) a settling lagoon. Sludge from the primary clarifiers was pumped directly to the primary anaerobic digesters. Secondary clarifier sludge was first concentrated by the DAF thickener,

FIGURE 2

then the thickened sludge was sent to the primary anaerobic digesters. A centrifuge provided final dewatering for most of the treated sludge. Alternatively, a small amount of treated sludge was sent to sludge drying beds. Drivers trucked dried sludge from the centrifuge and drying beds to a storage area. Sludge was eventually applied to agricultural land. A sludge lagoon was filled to capacity and not receiving additional sludge or digester supernatant at the time of the inspection.

Industrial Wastewater Treatment

Industrial influent from a few large food processing plants arrived at the plant in a dedicated sewer. Industrial flow is mostly seasonal with the largest flows from August through October. Del Monte Food Corporation generates approximately 85% of the industrial influent, with Indian Summer-American Foods, Inc. contributing the bulk of the remainder. The latter is a vinegar processor and generally operates year-round. Screens at the industrial plants and a rotating screen at the treatment plant remove large solids from the industrial influent. Wastewater is then pumped without further treatment to sprayfields which lie between the Yakima plant and the Yakima River. Forage crops had been planted, but during the inspection growth appeared to be marginal. Weeds were also a problem.

Operators determined industrial flow rates from sprayfield pump records. Peak season flow was estimated to be 1 MGD. During off seasons (cold weather/winter) the sprayfield is shut down and industrial wastewater is treated along with the domestic wastewater. Such combined treatment at higher industrial flow rates was reported to cause problems with STP operation. Yakima recently initiated ground water monitoring at the sprayfields, but no conclusions on treatment effectiveness have yet been reached.

PROCEDURE

Ecology collected both grab and composite samples at the STP. Influent composite samples were collected from each channel at the flow splitter prior to the primary clarifiers. An effluent composite sample was collected at the end of the chlorine contact chamber. A composite sample was also collected of the industrial wastewater at the wetwell. Ecology Isco composite samplers collected equal volumes of sample every 30 minutes for a 24-hour period. Grab samples were collected from both channels of the influent, from the aeration basins, from the industrial wetwell, and from the chlorine contact chamber discharge. Grab samples were also collected from the groundwater pumped from beneath the aeration basins, the Yakima River, and from a sewer of uncertain origins passing beneath the sprayfields and discharging into the Yakima River. Sample locations are summarized in Appendix A and noted on Figure 2.

Yakima also collected influent and effluent composite samples. Sampling locations generally corresponded to those of Ecology samples. The exception was the influent sample, where Yakima collected only from the right influent channel. Their sample station was very near the Ecology composite sampler in this channel. Sampling periods and volumes replicated Ecology sampling procedures.

Ecology and Yakima samples were split for analysis by both Ecology and Yakima labs. Parameters, samples collected, and schedules are summarized in Appendix B.

Samples for Ecology analysis were placed on ice and delivered to the Ecology Manchester laboratory. Chain-of-custody procedures were observed throughout. Appendix C summarizes analytical procedures and the laboratories performing the analysis.

QUALITY ASSURANCE\QUALITY CONTROL

Sampling

Sampling quality assurance included priority pollutant cleaning of sampling equipment. (Appendix D). Sampling in the field followed all protocols for holding times, preservation, and chain-of-custody set forth in the Manchester Laboratory User Manual (Ecology 1991).

General Chemistry Analysis

All holding times were within criteria. Procedural blanks were acceptable. Instrument calibration and standard reference material were within appropriate control limits.

Metals Analysis

All holding times were within criteria. Procedural blanks were generally acceptable except for cadmium in the aqueous samples. Results for cadmium, which were less than 10 times the blank concentration, were qualified to indicate potential contamination from the sample preparation process. The laboratory qualified these parameters with "B."

Instrument calibration, spike recoveries, duplicate spike recoveries, and standard reference material were generally within acceptable control limits. Exceptions were:

- 1) Copper was outside the relative percent difference window for precision. The laboratory qualified copper results "E."
- 2) Thallium is qualified with "J," denoting estimated results because of problems with standard reference material recovery.

VOAs, BNAs, and Pesticides/PCBs

Holding times were generally within criteria. Method blanks for both water and sludge samples were generally acceptable. Exceptions were VOA compounds detected at concentrations less than five times the method blank concentration and BNA compounds detected at concentrations less than ten times the method blank concentration. The lab qualified these compounds with the "U" qualifier to indicate that these analytes were not detected at a level above the suspected contamination amount.

Initial and continuing calibrations, matrix spikes, and surrogate recoveries were generally within acceptable QC limits. The lab qualified all exceptions exceeding the maximum 30% relative standard deviation (RSD) for initial calibration standards with the "UJ" qualifier. Exceptions exceeding 25% deviation between the initial and continuing calibration standards were also qualified with the "UJ" qualifier.

Bioassays

Control results and reference toxicant results were within acceptable ranges for all organisms tested. Test environment data were generally within acceptable ranges. Exceptions included:

- 1) The test procedure for *Ceriodaphnia dubia* varied slightly from EPA recommendations in that a 13-ml test solution was used instead of a 15-ml test solution. Since validation criteria were met, this did not affect the outcome of the test.
- 2) Chlorine residual was measured in the sample at a concentration that may have been toxic to aquatic organisms. Chlorine residual measured in the laboratory was 0.31 mg/L. Since chlorine residual is an NPDES permit limited parameter, its effect on bioassays is of some pertinence. Consequently, the inspector did not request sample dechlorination. Since the inspection Whole Effluent Toxicity (WET) guidelines have been changed to call for bioassays to be run on unchlorinated or dechlorinated effluent.

RESULTS AND DISCUSSION

Domestic Wastewater Treatment

Flow Measurements

Ecology measured instantaneous flows at the east and west influent channel's Parshall flumes. Typical flows were 7.5 MGD for the west channel and 7.7 MGD for the east channel. Yakima instantaneous flow meter measurements for each channel corresponded fairly well to calculated values, with differences less than 10%.

Yakima's flow totalizer reported the flow rate to be 12.9 MGD for the period from 21:00, October 6, 1992, to 21:00, October 7, 1992. This rate approached the 13.7 MGD monthly average design capacity, but was well below the 22.3 MGD design capacity for peak month average flow (Table 1). Historically, August, not October, is their peak month. The inspection flow and flow for the seven previous 24-hour monitoring periods were each greater than 85% of the design capacity for monthly average flow. Should flows frequently exceed 85% of monthly design capacity, the design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing adequate treatment capacity should be submitted to Ecology.

Table 3 - Influent NPDES Limits/Inspection Results - Yakima STP, 1992

		Harin		dsui	Inspection Data+	
				Ecology	Ý	STP
				Composite	ite	Composite
		Location:	Inf-E-R	Inf-E-L	Tot-Inf-E	γ-Jul
		Type:	E-comp	E-comp	TotalFlow	Y-comp
		Date:	10/6-7	10/6-7	10/6-7	10/6-7
		Time:	ල	ල	<u>@</u>	ල
		Lab Log #:	418159	418160		418161
Parameter	NPDES Permit Limits					
Flow Loading						•
(MGD)	101				12.9	12.9
Monthly Peak	22.3					
Instantaneous Peak	7.6					
DODE Loading	Ė					
(mg/L)			310	430	370	430
Average Monthly (lbs/D)	32700		16700	23100	39800	46300 #
TSS Loading			506	547	866	205
Average Monthly (Ibs/D)	35000		11200	13300	24500	22100 #

Average of left and right channel concentrations. Instantaneous measurements. found flows approximately equal in each channel. Influent Ecology sample Yakima sample Composite sample Composite sample Het side of the channel Total

Inf comp (©) L

Ecology analytical results

NPDES Permit Compliance

Effluent inspection results were generally less than weekly and monthly permit limits (Table 2). BOD₅, TSS, pH, and effluent flow rates were all within the monthly averages imposed by NPDES permit limits.

Calculation of the ammonia limit found the chronic criteria to be limiting (Table 2). The chronic criteria concentration, determined for the edge of the discharge dilution zone, was based on 15% of the river's lowest daily flow during the week of the inspection. Flow in the river varied substantially during the week due to the ending of the irrigation season, ranging from 1383 cfs on October 4 to 975 cfs on October 9. Total ammonia (NH₃) in the effluent exceeded the calculated NPDES permit chronic limit by 46%. Steps to reduce effluent NH₃ concentrations should be investigated. At the time of the inspection only two of the four aeration basins were in service. Conceivably, putting more aeration basins into service could be a solution.

The Ecology effluent fecal coliform grabs (250#/100mL & 3000#/100mL) exceeded the permit monthly average limit, one by a factor of 10 (Table 2). The highest value also surpassed NPDES permit weekly average limit. The geometric mean of the two Ecology fecal coliform grabs (866#/100mL) exceeded weekly averages. Chlorine residual concentrations showed some variability prior to dechlorination (Table 3). The higher fecal coliform result was associated with the lower chlorine residual prior to dechlorination. Varying degrees of dechlorination were also observed. Ecology results for samples collected after dechlorination ranged from 0.1 to 0.5 mg/L. Fine tuning the new chlorination and dechlorination systems should provide acceptable disinfection and avoid excessive chlorine discharges.

BOD₅ loading was high relative to the monthly average design capacity for prevention of facility overloading included in the permit (Table 1). The Ecology sample BOD₅ influent load (39800 lbs/day) appreciably exceeded the permit design capacity. The Yakima sample BOD₅ results (33400 lbs/day) also slightly exceeded the design capacity. Should BOD₅ loading frequently exceed 85% of design capacity, the design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing to maintain adequate treatment capacity should be submitted to the Department of Ecology. The Ecology sample TSS influent load (24500 lbs/day) was less than 85% of the NPDES permit design criteria.

General Chemistry/Plant Operation

General chemistry data are reported in Table 3. Inspection data showed good reductions (>90%) across the STP for TSS, BOD_5 , BOD_{INH} , and COD (Table 4). Moderate reductions (>50%) were seen in TOC, total Kjeldahl-N, and total P. Reductions in NH₃-N were quite modest (< 3mg/L) and corresponding increases in NO₂+NO₃-N were also quite small (<0.1 mg/L). The nutrient data and the relatively high effluent NH₃ concentration suggest that there is little nitrification across the plant.

Table 2 - Effluent NPDES Limits/Inspection Results - Yakima STP, 1992

The state of the s	**************************************				Inspection Data+	ata+		
			Ecology	STP		Grab		
			Composite	Composite	0,	Samples		
Parameter	NPDES Permit Limits	Location:	Ef-E	Ef-Y	Ef-1	Ef-2	Ef-3	Ef-4
		Type:	E-comp	Y-comp	grab	grab	grab	grab
		Date:	10/6-7	10/6-7	10/6	10/6	10/7	10/7
		Time:	ල	©	1055	1525	0825	1210
		Lab Log #:	418166	418167	418162	418163	418164	418165
		├—						
	Average Average							
BOD5			!	1				-
(mg/L)	30 45		13	e 60.3				
(Q/sqj)			1399	1001				
(% removal)	8 2		96	26				
TSS (Ċ			d		
(mg/L) (lbs/D)	30 45 5250 7875		1399	1, 1829	1291	6 896		
(% removal)			94	65	94	26		
Effluent Flow				: 4 9				
##(QBM)	22,3		12.9	12.9				
Fecal coliform (#/100 mL)	200 #/100ml 400 #/100ml						3000 J	250 J
<u>рн (S.U.)</u>						i.		
	0.6 > Hd > 0.0				50.7	CS.,		
Total Ammonia (mg/L)	Maximum Value							
(NH3)			0.70	12.0	1. 2.2 1.	11.8		
			o n	G. 6.	7.5	9.00 9.00		
Acute (NH3-N) (NH3-N)								
Chronic-1** (NH3)	6.32 5.20							

. :

Calculated as the EPA one-hour average concentration criteria for ammonia (NH3) in the effluent; Average effluent pH=7.44; Average effluent temp=20.4°C

Total ammonia criteria was calculated as the EPA four-day average concentration in the effluent that meets concentration criteria at edge of dilution zone.

The 1-day weekly low flow was provided from the Bureau of Reclamation guaging stations on the Yakima River during the week 10/4 through 10/10 was 975 cfs; River pH = 8.25; River temp = 11.6°C; River Background NH3-N = 0.027mg/L.

Effluent

Ecology sample. **₩** ₩ ≻

Yakima sample. Grab sample.

Composite sample. grab comp @

Composite sampling time: 08:00-08:00. Ecology analytical results.

Flow rate provided by Yakima STP (12.9 MGD).

Parameter Location:	Inf-1-R Inf-2-L		Inf-3-R	Inf-4-L	Inf-E-R	Inf-E-L	hf-Y**	E-JEI	Ef-1-A	Ef-2	Ef-3	Ef-4	EF-E	Et-Y
	cara		ء	drab	F-comp	F-comp	Y-comp	orab	orab	orab	orab	arab	E-comp	Y-comp
Oate.	901	10/6	10/6	10/6	10/6-7	10/6-7	10/6-7	10/6	10/6	10/6	, 101	107	10/6-7	10/6-7
Times	0919	0904	1430	1428	е	e	е	1055	1245	1525	0825	1210	e	в
Lab Log #:	418155	418156	418157	418158	418159	418160	418161	418162		418163	418164	418165	418166	418167
GENERAL CHEMISTRY														
Conductivity (umhos/cm)	495	655	2400	609	633	531	498	640		564			594	603
Alkalinity (mg/L CaCO3)					129	126	130						159	160
Hardness (mg/L CaCO3)					87.9	89.5	85.9						74.9	76.4
SOLIDS					1	1	i							
TS (mg/L)					835	3/7	783						415	
1NVS (mg/L)	173	033	210	033	906	240	243 204	10		O			234 134	17
TNVSS (ma/L)	ì	3)	3	88	33	29	1		2			N	
% Solids														
% Volatile Solids(dry)														
OXYGEN DEMAND PARAMETERS	AMETERS													
BODS (mg/L)					310	430	310						13	ස (ර
BOD INH (mg/L)					290	380	300						- 6	6.0 0.0
BOD35 (mg/L)					631	737	515						900	64
COD (mg/L)	168	179	211	248	238	267	238	64.4		63.2			110	63.3
TOC (soil – % solids)														
NUTRIENTS														
Kjeldahl-N (mg/L)					25.3	33.8	13.7						12.8	13.4
NH3-N (mg/L)					10.2	13.8	11.0	12.5		9.66			9.78	9.85
NO2+NO3-N (mg/L)					0.218	0.138	0.023	0.171		0.089			0.196	0.113
Total-P (mg/L)					4.95	5.29	4.38	2.99		2.93			2.1/	2.11
MISCELLANEOUS		0		9				,		7				
Oil and Grease (mg/L)	26 J	36.0	C 89	49 J				? "		3	1 0000	- 010		
T-Colliorm MF (#/100mL)											2000	2		
SODIUM ADSORPTION RATIO PARAMETERS	RATIO PAI	RAMETE	RS											
HCO3 (mg/L)			1											
Mg (mg/L)														
FIELD OBSERVATIONS	!	1		;					•					
Temperature (°C)	<u>ກ</u>	20.5	20.5	5. 2. 2. 2. 3.	(ç		20.7	ZO.3	SO.52			Ċ	Ç
ا emp-cooled (۲۰)۰+ Ha	7.24	795	7.04	6 92	2.6 7.29	2.8 7.18	10.5 7.07	7.53	7.49	7.35			7.72	7.81
Conductivity (umhos/cm)	405	510	1760	510	425	450	420	550	520	480			510	510
Chlorine (mg/L)								0.6/0.3*	1.0/0.5*	0.6/0.1*	/0.2*	*1.0/9.0		
				ш;	Ecology samples.	ples.								
				<u>-</u> ا	Yakima samples.	pies.								
grab Garab sample.	9			dno	duplicate sample The associated n	mpie od nimerics	Jupiicale sample The associated numerical results is an estimated quantity	, actimate,	4 quantity					
	re. tion times: 0	0.80-00.8	_	° 5	The analyte	was not dete	scred at or ab	ove the rer	The apainte was not detected at or above the reported estimated result	ed result.				
	nel in direction	on of flow.	;	*	Pre-dechlori	ination/Post	Pre-dechlorination/Post-dechlorination	uo						
	nnel in direw	vetion of fle	.w.	*	Yakima colle	scted sample	Yakima collected sample from right channel.	hannel.						
A Field measurement duplicate	ent duplicate			*	Refrigerated sample.	sample.								
														out of the second
Charles - 111000000000000000000000000000000000														

Parameter II Location:		Aer-Mix-1	Aer-Mix-2	Sludge	1-19-1	I-Ef-2	I-Ef-3	1-Ef-4	I-EF-E	River 1	River 2	Ground	AgOut
Type:	grab-c	grab	grab	grab	grab	grab	grab	grab	E-comp	grab	grab	U)	grab
Date: Time:	10/6 AM&PM	10/6	10/6	10/6	10/6 0955	1500) 060 -	10//	/-@ 	1050	10/6	10/6	1115
Lab Log #:		418169	418170	418171	418172	418173	418174	418175	418176	418177	418178	418179	418180
GENERAL CHEMISTRY Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3)	591 159				236	275			261 1U 61.3	137 62.8 58.3			162
SOLIDS 7S (mg/L) TNVS (mg/l)									2790				
TSS (mg/L) TNVSS (ma/L)		2270 345	2360		447	200			227 1U			•	6
% Solids (% Volatile Solids(dry)	AMERICOS			23.6 67.2									
OATGEIN DEMAND FAHAMETERS BODS (mg/L) BOD INH (mg/L)	KAMETERS								> 700				
BOD35 (mg/L) COD (mg/L) TOC (water mg/L) TOC (soil = % solids)				2.1	1360	1680			3720 1370			61.6	131
NUI KIEN I S Kjeldahl-N (mg/L) NH3-N (mg/L) NO2+NO3-N (mg/L) Total-P (mg/L)									12.4 0.183 0.093 0.977	0.027	0.020	0.234 1.8 0.217	0.500 0.159 0.161
MISCELLAINEOUS MISCELLAINEOUS GREATE (198/L) F-Coliform MF (#/100mL) T-Coliform MF (#/100mL) SODIUM ADSORPTION RATIO PARAMETERS HCO3 (mg/L)	RATIO PARAM	ETERS			re Ti		190000 J 2	220000 P > 400000					
Ca (mg/L) Mg (mg/L) Ra (mg/L) FIELD OBSERVATIONS Temperature (°C)		20.9			17.2 4.87 12.9 18.8	16.0 4.78 18.0 21.3				11.6	11.6	17.4	16.7
Temp-cooled (°C)*+ pH Conductivity (umhos/cm) Chlorine (mg/L)	./9'0	7.21 480			4.98 210	4.55 230	≥0.1		2.8 5.07 242	8.25 125	8.25 125		6.68 130
gr-comp/GC Grab-composite I Industrial dischal Aer-Mix Aeraton Basin Mi Sludge Centrifuge sludge * Pre-dechlorinati *+ Refrigerated sam	Grab-composite Industrial discharge Aeraton Basin Mixed Liquor Centrifuge sludge extract Pre-dechlorination/Post-dechlorination Refrigerated sample	or echlorination			River Ground AgOut J P U	Receiving was Ground water Stormwater pi The associate Greater than.	Receiving water: Yakima River Ground water pumped from be Stormwater pipe with inflitration The associated numerical resu Greater than. The analyte was not detected a	na River Ifrom bene nflitration i ical results	Receiving water: Yakima River Ground water pumped from beneath aeration basin Stormwater pipe with inflitration from sprayfield The associated numerical results is an estimated quantity. Greater than. The analyte was not detected at or above the reported amount.	n basin eld ated quanti reported a	ty. mount.		

Table 4 - Ecology General Chemistry Results Percent Reduced - Yakima STP, 1992.	neral Chemistr	y Results Po	ercent Redu	ıced – Yakir	na STP, 19	92.				
Parameter	Location:	Inf-E-R	Inf-E-L	Tot-Inf-E	Ef-E	Ecology	hf-Y	Ef-Y	Yakima	
	lype:	E-comp	E-comp	E-comp	E-comp	Percent	Y-comp	Y-comp	Percent	
	Date:	10/6-7	10/6-7	10/67	10/6-7	Reduced	10/6-7	10/6-7	Reduced	
	Time:	©	©	ල	ල		ල	ල		
	Lab Log #:	418159	418160	*	418166		418161	418167		
GENERAL CHEMISTRY								***************************************		
Alkalinity (mg/L CaCO3)		129	126	128	159	-25%	130	160	-23%	
SOLIDS										
TSS (mg/L)		209	247	228	13	94%	205	17	%26	
OXYGEN DEMAND PARAMETERS	AMETERS									
BOD5 (mg/L)		310	430	370	13	%9 6	310	603	%2 6	
BOD INH (mg/L)		290	380	335	-	%26	300	6.9	%86 98%	
COD (mg/L)		631	737	684	64	91%	615	64	%06	
TOC (mg/L)		238	267	253	110	26%	238	63.3	73%	
NUTRIENTS										
Kjeldahl-N (mg/L)		25.3	33.8	29.6	12.8	925%	13.7	13.4	90%	
NH3-N (ma/L)		10.2	13.8	12	97.6	19%	-	9 85		
NO2+NO3-N (ma/L)		0.218	0 138	0.178	0.198	-10%	0.023	0.13	-3010%	
Total-P (mg/L)		4.95	5 29	5 12	4.6	580%	4.38	2.1.6	500%	
TIN/m 2/1 /		2	9 6	1 0		0600	9 6	7.1.	06.70	
THA(mg/L)		10.4	ה מי	12.2	0.07	18%	11.02	96.6	10%	
Inf Influent										
	201									
- '	001									
Y Yakıma samples.	les.									
L Left side of the	eft side of the influent channel									
R Right side of the	Right side of the influent channel									
* Average of left	Average of left and right channel concentrations	concentrations								
Average is bas	Average is based on approximately equal flows in the two channels	Ivedual flows in	the two channels	,,						
comn Composite sample	mnle			·						
	Composite camping time: 9:00 AM = 9:00 AM	AAA 00.0 b.								
TIN Total increasi	nipiliig unie. 8.00 An		IN CONTRACTOR							
	lota: Illotgallic Illitogell (Till = INDS-IN + INOS	+ N-70N + N-9F	(NI=00 A							

There appear to be tangible differences in general chemistry concentrations between the left and right influent channels (Table 3). Visual inspection found differences both in color and occasional oil and grease sheens. Composites detected greater BOD₅, BOD_{INH}, COD, TOC, and TSS concentrations in the left channel than in the right. Conversely composite results for dissolved solids and conductivity in the right channel appreciably exceeded that in the left. Grab samples collected from the two channels at approximately the same time also found variability. During the inspection, Yakima personnel collected samples where the channels were interconnected but mixing appeared minimal. The Yakima sampling was primarily from the right channel and the data generated was quite similar to the Ecology right channel data. Yakima should determine whether the two channels are routinely different enough to necessitate sampling both channels to accurately determine influent loading.

Sample Splits

Ecology analysis of sample splits found a fairly reasonable match between Ecology and Yakima influent and effluent composite samples (Table 3). Exceptions were somewhat lower values for several Yakima oxygen demand parameter samples and a much lower value for the Yakima Kjeldahl-N influent sample. Of note was the observation that Yakima composite sample temperatures were generally seven to eight degrees centigrade higher than Ecology samples. It is unclear how long the Yakima samples sat in the lab prior to measuring the temperature. Yakima should assure that samples were being properly cooled during collection.

Comparison of Ecology's and Yakima's laboratories analysis of split samples produced mixed results (Table 5). Fecal coliform comparisons showed the greatest difference between analyses. Ecology's values for one effluent grab was nearly a factor of 100 times greater than Yakima's, while another effluent grab was only marginally greater. Both sets of industrial fecal coliform analyses were uniformly high. Yakima does possess laboratory accreditation from the Department of Ecology laboratory accreditation program, but this discrepancy may indicate problems. Yakima should review their fecal coliform protocol to assess test performance. It is suggested that they contact Ecology's laboratory accreditation program if assistance is needed.

Yakima's TSS results were slightly lower than Ecology's results. The most marked differential was the industrial effluent composite sample (I-Ef-E) where Yakima's results (627 mg/L) greatly exceeded Ecology's results (227 mg/L). The results of the Inf-E-L sample were also notably different.

BOD₅ and NH₃-N comparisons found Ecology's values slightly lower than Yakima's values (Table 5). Correlation between sets of data was very good (0.89 and 0.99, respectively). Linear regression analysis between six pairs for BOD₅ and four pairs for NH₃-N corroborated that Ecology's values were consistently lower. The actual difference between each pair of data appeared marginal.

The two chlorine residual splits analyzed found some variation between Ecology and Yakima results.

Table 5 - Sp	Table 5 - Split Sample Result Compariso	ult Com	parison –	ın – Yakima STP, 1992	TP, 1992							
Parameter	Lo	Location: Type: Date: Time:	Inf-E-R E-comp 10/6-7 @ 418159	Inf-E-L E-comp 10/6-7 @ 418160	Inf-Y** Y-comp 10/6-7 @ 418161	Ef-3 grab 10/6 0825 418164	Ef-4 grab 10/6 1210 418165	E-comp 10/6-7 0 418166	Ef-Y Y-comp 10/6-7 © &	1-Ef-3 grab 10/7 0900 418174	I-Ef-4 grab 10/7 1155 418175	I-Ef-E E-comp 10/6-7 @ 418176
	Laboratory											
TSS (mg/L)	Ecology Yakima △		209 220	247 116	205 172			13	2 =			227 627
BOD5 (mg/L)	Ecology Yakima △		310 360	430 465	310 371			133	9.3 10			>700 2155
NH3-N (mg/L)	Ecology Yakima △		10.2 13.4	13.8 15.7	, . .			9.78	SS 1			0.183 1.23
F-Coliform MF (#/100ml)	Ecology Yakima					3000 J 36	, 250 J 100			190000 J TNTC	220000 P TNTC	
T-Coliform MF (#/100ml)	- Ecology Yakima									>4000000 TNTC	>400000 TNTC	
Chlorine (mg/L)	EcologyYakima					0.2*	0.51*	10000		₩ I		
d@ b TNTC	Yakima unsure how long composite samples were out of refigerator 24 hour composite. Collection period: 0800 – 0800. The analyte was positively identified, but the associated value is an estimate. Too Numerous To Count Analysis not provided	ong compo ollection pe iively identi is an estime unt	site samples v priod: 0800 – (fied, but ate.	vere out of re 3800.		Inf In Ef Si Comp Er grab gr Comp Co	Influent samples. STP effluent Ecology composite sample grab sample Composite sample	sample	т × * S × 8	Ecology sample Yakima sample Industrial influent to sprayfields Pre-dechlorination Sample collected from right channel.	rayfields right channel.	

Organics/Metals

Organic and metals data are summarized in Tables 6 and 7 (compounds detected) and in Appendix E (all compounds). Organic analysis revealed a small number of detected VOA and BNA compounds in the effluent, although none exceeded EPA water quality criteria (Table 6-EPA, 1986). Several pesticides were also detected in the municipal effluent, but these too were less than the EPA water quality acute and chronic criteria. A fair number of compounds were detected in the influent, the largest concentration being methylene chloride. Analysis of influent VOAs, BNAs, pesticides, and PCBs found several that exceeded EPA water quality chronic criteria; but all were subsequently reduced to below criteria across the STP.

Priority pollutant metals analysis identified concentrations of copper, lead, and silver in the effluent that surpassed EPA water quality chronic criteria (Table 7 - EPA, 1986). None exceeded acute criteria. The comparisons are between the effluent concentrations and the EPA water quality criteria and do not consider any mixing with the receiving water that may occur.

Bioassays

Daphnia pulex and rainbow trout results exhibited no acute toxicity (Table 8). Microtox results indicated some effects with an estimated EC_{50} of 48% effluent concentration.

Chronic effects were noted in both chronic tests. Based on statistical analysis Fathead minnow results for survival displayed no chronic effects (LOEC > 100%). A 75% survival rate at 100% effluent concentration would suggest some caution in interpreting this result. A chronic effect at the high concentration was observed for the growth test. Fathead Minnow growth in the 100% effluent was 50% of the control and had an NOEC at 50% of effluent concentration. The Ceriodaphnia dubia survival test produced an NOEC of 25% effluent concentration. The NOEC for Ceriodaphnia dubia reproduction was less than 6.25% of effluent concentration. This data suggests that the effluent exhibits chronic toxicity.

Chlorine residual was detected in the effluent sample collected for bioassays. At the laboratory, chlorine residual was detected at 0.31 mg/L. These concentrations could produce adverse effects in toxicity tests prior to test initiation. Revised Ecology policy now requires that bioassay samples are collected either before chlorination or after dechlorination. (Ecology, 1993)

Sludge

Sludge results were compared to the EPA National Sewage Sludge Survey to learn if the Yakima sludge contained priority pollutant concentrations noticeably higher than national averages (Table 9-EPA, 1990). Only arsenic (43.7 mg/Kg-dry) exceeded one standard deviation from the geometric mean of all STPs in the survey. Copper, lead, and zinc exceeded the geometric mean, but were all within one standard deviation. All other metals were less than the geometric mean.

Type: g Date:	4000					1	Ī	Z-13	E/-E	Sludge		I-Ef-2		EPA Water Quality	r Quality
Date:	gran	grab	grab		E-comp	E-comp	grab	grab	E-comp	grab	grab	grab	E-comp	Criteria Summary**	mmary**
.og#: 41 (0) (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	10/6	10/6	10/6		10/6-7	10/6–7	10/6	10/6	10/6-7	10/6	10/6	10/6	10/6-7	Acute	Chronic
20,7	0919 418155 4	0904 418156	1430 418157	1428 418158	(0) 418159	(d) 418160	1055 418162	1525 418163	(d) 418166	1325 418171	0955 418172	1500 418173	(g) 418176	Fresh	Fresh
	(/ng/L)	(ng/L)	(//B//)	(mg/L)			(ng/L)	(/ng/L)		(µg/Kg-dry)	(mg/L)	(/\day(r)		(//B//)	(ng/L)
7		110 46 J	7	105 68 J				131 100 1		6400 2000 J	409 42 J	406 44 J		11,000 *(a)	
)) -	-	2 % 2 %	⊇ <u>€</u>) 2 2 5			1000	ر 12 مر	% 4 		* 008.80	1 240 *
	, =	, =	, =	2 - C										35,000 *	- 1 5
) –) >	ر (그 구						5,280 *	* 840
	22	D D) >	3.5 J 5.5			10 U	10 U		1000 1000 U	5 5 U U	5 to		32,000 *	
BNA Compounds					(\ma/L)	(ng/L)			(mg/L)	(µg/Kg-dry)			(ng/L)	(/ng/L)	(//B//)
Phenol						10 U			10 U	3700 J			10 J	10,200 *	2,560 *
1,4-Dichlorobenzene					2.2 J	0.8 J			0.5 J	8000			10 J	1,120 *(h)	763 *(h)
1,2-Dichlorobenzene 4-Methylphenol					1,6 J 10 U	10 U			10 C	8000 U 2200 J			5 C	1,120 *(h)	763 *(h)
Naphthalene						1.2 J				8000 U				2,300 *	620 *
4-Chloroaniline 2-Methylpanhthalene					4.4 4.4	4.0 5.0			20 C	1900 J			20 J		
Diethyl Phthalate														940 *(i)	(i) €
N-Nitrosodiphenylamine										ال 1700					
Phenanthrene									O 5	270 J					
Di-n-Bury Prinalate Butylbongyl Dhthalate					5 1 .	გ ლ ⊃			χο α Σ τι Σ =	27000 		_		940 (1)	≘ (÷ • •
Early Don't June Targette					2 00	; Z				17000			. 16		
Di-n-Octyl Phthalate						3.4 J				8000 U				940 *(i)	€ * • •
Indeno(1,2,3-cd)Pyrene					10 O	0.3 J			10 C	N 0008			10 U		
Pesticide/PCB Compounds					(µg/L)	(/\b/a/)			(µg/L)	(µg/Kg-dry)			(mg/L)	(µg/L)	(ng/L)
beta-BHC					0.04	0.05			0.02	0.17			D 10.0	100 *(q)	o c
gaiiiila-bho (Liidaile) 4 4'-DDD					=	0.00			0.00	- 100 - 100 - 100				*	
↑ 100 m					,	0.02								1.050 *	0.001 (u)
4,4'-DDT						0.03			0.01 U	0.01 U				1.1 (u)	
Endosulan I					=	0.01							0.03		
Endosulfan Sulfate					- >	0.01 U						L	0.1		
J The associated numerical result is an estimated quantity	al result is	an estimate	ed quantity.		-		side of chan	Left side of channel in direction of flow.	on of flow.	1	nposite co	llection tim	Composite collection times: 08:00-08:00	١.	1
U The analyte was not detected at or above the reported result. U The analyte was not detected at or above the reported estimated result	ected at or	above the	reported res	sult. timated res	u It	R Righ	t side of che strial discha	Right side of channel in direction of flow Industrial discharge to sprayfield	stion of flow. field	a Tota	Total Halomethanes Total Dichlorobenzenes	thanes			
					Sludge	_	Centrifuge sludge extract	je extract		i . Tot	Total Phthalate Esters	e Esters			
EF Effluent					00	comp Com	Composite samples.	les.		k Tota	Total Nitrosamines	nines			
* Insufficient data to develop criteria. Value presented is the	lop criteria	t. Value pre	esented is th	əĻ	盗	River Rece	iving water.	Receiving water: Yakima River	er.	q Tota	Total BHCs				
LOEL - Lowest observable Effect Level.	ble Effect L	evel.			b	grab Grab	Grab sample.			s End	Endosulfan				
** From EPA, 1986						E Ecolo	Ecology sample.			.gg n	DDT plus metabolites	abolites			

lye -Ef-E -Ef-E	EPA Water Quality Criteria Summary**	Acute Fresh		(ng/L) (ng/L)		850 # 48 #	360 # 190 #	*	2.8 + 0.9 +		+	+	57 + 2.2 +	0	1,112 + 124 +		2.5 + 0.12	+ 66 +
	Œ		4					1 U 1 U		_			۵.	D.	_	Ð	5 U 0.5 U	12 D
												ш	z				32.8 N 0.	1290
Ef-E E-comp 10/6-7 @ 418166 1.6 P 1.6 P 11 P 11 P 11 P 0.1 U	Ef-E E-comp	10/6–7 @	418166	(µg/L)	1,6 P			٦ -	0.14 PB	<u>+</u>		Ţ	3.3 P	0.1 Q	10 U	20 U	0.96 P	71 g F3
			418160	(µg/L)	1.7 P			1 U	0.81 B			82.9	18.6	2.8	10 U	2 U	7.25	704
Location: Inf-E-R	Inf-E-R E-comp	10/6–7 @	418159	(//B//)	2.4 P			-	1.92	ე ე		87.8	25.9	0.1	10 O	∩ 20	4	707

Table 8 - Effluent Bioassay Results - Yakima STP, 1992.

NOTE: all tests were run on the effluent (Ef-GC sample) - lab log # 418168

Daphnia pulex - 48 hour survival test

(Daphnia pulex)

Sample	# Tested *	Percent Survival
Control 6.25 % Effluent 12.5 % Effluent 25 % Effluent 50 % Effluent 100 % Effluent	20 20 20 20 20 20 20	100 100 95 100 100 95

Acute LC50 = >100 % effluent LOEC = >100 % effluent

<u>Ceriodaphnia dubia - 7 day survival and reproduction test</u> (Ceriodaphnia dubia)

Sample	# Tested	Percent Survival	Mean # Young per Original Female
Control	10	90	14.2
6.25 % Effluent	10	80	7.1
12.5 % Effluent	10	80	6.9
25 % Effluent	10	80	7.9
50 % Effluent	10	40	3.9
100 % Effluent	10	0	0

Survival NOEC = 25 % effluent LOEC = 50 % effluent Reproduction NOEC < 6.25 % effluent

Fathead Minnow - 7 day survival and growth test (Pimephales promelas)

	#	Percent	Average Dry Weight
Sample	Tested *	Survival	per Fish (mg)
Control	40	92.5	0.32
6.25 % Effluent	40	87.5	0.40
12.5 % Effluent	40	100.0	0.36
25 % Effluent	40	95.0	0.37
50 % Effluent	40	90.0	0.29
100 % Effluent	40	75.0	0.16
	NOEC	Survival = >100 % effluent	Growth NOEC = 50 % effluent
	LC50	= >100 % effluent	LOEC = 100 % effluent

^{*} four replicates of 10 organisms

Rainbow Trout - 96 hour survival test

(Oncorhynchus mykiss)

Microtox

Sample	# Tested	Percent Survival	Time	EC50 (%effluent)
Control 100% Effluent	30 30	100 100	15 minutes	>45 (EC50 = 48% – extrapolated from test concentrations)

NOEC - no observable effects concentration LOEC - lowest observable effects concentration LC50 - lethal concentration for 50% of the organisms EC50 - effect concentration for 50% of the organisms

^{* 4} replicates of 5 organisms

Table 9 – Comparison of Compounds Detected in Digested Sludge with the National Sewage Sludge Survey* – Yakima, 1993

			Dat	a from EPA Slud	_	
				(EPA, 1		
Parameter	Location:	Sludge	Geometric	Geometric	Number of	Percent
	Type: Lab Log #	grab 418171	Mean **	Mean + 1 S.D.	Samples	Detected
	Lab Log "	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)		%
VOA COMPOUNDS						
	(VOA compound by the NSSS we detected in the	ere not				
BNA COMPOUNDS						
Bis(2–ethylhexyl) Phthalate		17	74.7	673	200	62
Pesticide/PCB						:
	(Pesticide/PCB evaluated by th were not detect the sludge)	e NSSS				
METALS						
Arsenic		43.7	9.93	28.7	199	80
Beryllium		0.14 P	0.37	0.71	199	23
Cadmium		6.18	6.9	18.7	198	69
Chromium		33.9	118.6	458	199	91
Copper		851 E	741.0	1703	199	100
Lead		142 N	134.0	332	199	80
Mercury		3.12	5.22	20.8	199	63
Nickel		19.9	42.7	137.5	199	66
Selenium		3.55	5.16	12.5	199	65
Zinc		1290	1202	2756	199	100

^{*} Geometric mean and variance are exponential conversions of arithmetic mean and variance for log-normal distributions and were derived utilizing the Method of Maximum Likelihood.

J Result is an estimate.

^{**} In general, concentrations are a weighted combination of flow rate group estimates.

^{##} Weighted combination of only two flow groups: flow \geq 100 MGD and 10 < flow < +100 MGD.

⁺⁺ Estimate from one flow group: 1<flow<10

Several organic compounds were also detected in the sludge (Table 6). Of these only bis(2-ethylhexyl)phthalate was evaluated in the sludge survey. The concentration in the Yakima sludge was less than the geometric mean from the national sludge survey.

Land application of sludge should be evaluated based on guidelines and limits included in the EPA sludge regulations (EPA, 1993).

Industrial Wastewater Treatment

General Chemistry

The industrial effluent was typical of food processing wastewater (Table 3). The concentration of BOD₅ was high (Ecology result >700mg/L), TSS concentration was moderate, and nutrient concentrations were low. During the inspection crop growth on the sprayfield was sparse. The sprayfield operator reported the area had recently been tilled and reseeded. Establishing and maintaining a good stand of cover in the sprayfields has proven elusive. Also weeds are a frequent problem.

Inspection water quality data are compared to several guidelines pertaining to the use of wastewater for irrigation (Table 10 - Metcalf & Eddy, 1991). Adjusted Sodium Adsorption Ratio (adj R_{Na}) calculations suggest moderate impact on water infiltration rates in sprayfield soils may occur due to wastewater application. Salinity in the industrial wastewater as calculated from conductivity was expected to have no impact in terms of crop water availability. The pH of the wastewater (4.55 - 4.98) was below the range for normal crop growth. Total nitrogen (Kjeldahl-N + NO₂-N + NO₃-N) concentrations were in the range that may cause slight to moderate inhibition of crop growth. Yakima should investigate the industrial wastewater to determine if the wastewater quality is suitable for the spray program being used.

High fecal (190000-220000 #/100ml) and total coliform (>400000 #/100ml) counts were detected in the industrial wastewater (Table 3). These levels could pose problems as a source of ground water contamination and as inadvertent runoff into the Yakima River. Monitoring by Yakima to determine typical coliform concentrations being sent to the sprayfield is recommended. The data generated should be compared to any applicable guidelines for land application of wastewater.

Of note, was an old concrete sewer pipe, approximately 36 inches in diameter, running beneath the sprayfield and emptying directly into the Yakima River. A pool of water from the pipe had collected in a small basin just adjacent to the River. Mats of bacterial growth and various other organisms were found in the water and on surrounding rocks. TOC concentration exceeded 130 mg/L (AgOut sample - Table 3). Although the actual source of this wastestream was unknown, the operator indicated it originates beyond the sprayfield boundaries. Any breaks in the pipe under the sprayfield could act as a direct conduit of land applied industrial wastewater into the Yakima River. The pipe should be investigated, the water quality characterized, and appropriated action taken.

Table 10	Table 10 - Guidelines for Interpretations of Water Quality for Irrigation* - Yakima, 1992	ations of Water (Quality fo	or Irrigation	- Yakin	າa, 1992
Potential Irrigation Proble	ation Problems	Units	Degree c	Degree of Restrictions on Use Slight to None Moderate Severe	on Use Severe	Yakima Sprayfield Industrial Wastewater**
Salinity ECw	(affects crop water availability)	dS/m or mmho/cm	8	0.7-3.0	>3.0	0.260
Permeability Range:	(affects infiltration rate of water into the soil soil. Evaluate using ECw & adj RNa***) adjRNa = < 0.3	soil ') and ECw =	%	0.7-0.2	. CO	adjRNa: 0.282 ECw = 0.26
Micellaneous Effects Nitrogen (Total-N) pH	Effects (affects susceptible crops) otal-N)	mg/L mg/L	Ž	5-30 Normal range 6.5-8.4	>30	12.5 4.6;5.0 ^a
* * * * W S	Metcalf & Eddy, 1991, pg. 1146. Data from Industrial Effluent samples: 418172, 418173, & 418176 Adjusted Sodium Adsoption Ratio pH values for the two industrial influent grabs (418172 & 418173), derived from conductivity Salinity of wastewater	.18172, 418173, & 418176 grabs (418172 & 418173).				
adjRNa	Adjusted Sodium Adsorption Ratio					

Organics/Metals

A number of VOAs, BNAs, and PCBs/Pesticides were detected in the industrial wastewater prior to sprayfield application (Table 6). Four (butylbenzyl phthalate, bis(2-ethylhexyl)phthalate, endosulfan II, and endosulfan sulfate) exceeded EPA water quality chronic criteria (EPA, 1986). Although concentrations exceeded chronic criteria for receiving waters, the effluent is land applied to sprayfields so these criteria are not directly applicable. Methylene chloride was found at the highest concentration (406 & 409 μ g/L).

Only three metals were detected in the industrial effluent (Table 7). The cadmium concentration was less than both acute and chronic receiving water criteria. Copper exceeded both acute and chronic EPA water quality criteria. Lead exceeded the chronic criteria. Several metal detection limits were above either chronic or acute criteria. Although some concentrations exceeded acute or chronic criteria for receiving waters, the effluent is land applied to sprayfields so these criteria are not directly applicable.

CONCLUSIONS AND RECOMMENDATIONS

Domestic Wastewater Treatment

Flow Measurement

Ecology's instantaneous flow measurements matched well with Yakima metering devices. The flow rate during the inspection exceeded 85% of permit design capacity for monthly average flow included in the NPDES permit. Should flows frequently exceed 85% of monthly design capacity, the design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing adequate treatment capacity should be submitted to Ecology.

NPDES Permit Compliance

Most parameters were within NPDES permit effluent limits and influent loading criteria. Exceptions included:

- Effluent total ammonia results exceeded the calculated NPDES permit chronic monthly limit. It is recommended that steps be taken to improve nitrification in the aeration basins.
- Ecology fecal coliform grab sample results exceeded the NPDES permit monthly average limit. A new chlorination system had been installed, but was not fully operational at the time of the inspection. The new system could be fine tuned to provide lower counts.
- Influent BOD₅ loading exceeded the average monthly design capacity included in the NPDES permit. Should BOD₅ loading frequently exceed 85% of design capacity, the

design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing to maintain adequate treatment capacity should be submitted to Ecology.

General Chemistry/Plant Operation

BOD₅ and TSS removal through the plant was greater than 90%. Effluent NH₃-N concentrations suggest little nitrification was occurring across the plant.

Ecology composite samples found differences in influent quality between two influent channels. Yakima should conduct a survey of the quality in both channels to determine if differences occur frequently enough to require routine composite sampling in both channels.

Sample Splits

Ecology laboratory analysis found a reasonable correspondence between Ecology's and Yakima's samples. Yakima should routinely (at least weekly) check composite sample temperatures to assure that they are adequately cooled during collection.

Comparisons between the two laboratories' analyses of split samples found some differences in fecal coliform, TSS, and NH₃ results. It is suggested that Yakima review their fecal coliform testing protocol. If necessary, they could seek assistance from Ecology's Laboratory Accreditation Section.

Organics/Metals

Several organic compounds were detected in both the influent and effluent. All effluent concentrations were less than EPA water quality criteria (EPA, 1986). Three metals detected in the effluent (Cu, Pb, and Ag) did exceed the EPA water quality chronic criteria. Dilution in an allowed mixing zone could reduce the concentrations below the water quality criteria. Monitoring of these metals should be continued.

Bioassays

Fathead minnow (growth NOEC = 50% effluent) and *Ceriodaphnia dubia* (survival NOEC = 25% effluent and reproduction NOEC < 6.25%) bioassays provided evidence of chronic effects. Ecology also observed some effects in the Microtox bioassays (EC₅₀ = 48%). The toxicity may have been caused by chlorine residual in the sample during the analysis.

Sludge

Comparison to the EPA National Sewage Sludge Survey found most organic and metals detected in the Yakima sludge at concentrations less than the survey's geometric mean plus one standard deviation. The exception was arsenic which exceeded one standard deviation from the mean.

Sludge use or disposal should be evaluated based on the guidelines and limits included in the EPA sludge regulations (EPA, 1993).

Industrial Wastewater Treatment

General Chemistry

The industrial effluent was fairly typical of food processing wastewater. The portion of the sprayfield observed had sparse ground cover. Comparison of inspection data to guidelines for the use of wastewater for irrigation (Metcalf & Eddy, 1991) suggest the Adjusted Sodium Adsorption Ratio, pH, and the total-N concentrations may inhibit normal plant growth to some degree. Yakima should further investigate the quality of the industrial wastewater to determine if it is suitable for the spray program being used.

High fecal and total coliform counts were found in the industrial wastewater. Monitoring and comparison to any applicable land application of wastewater guidelines and regulations are recommended.

The pipe running beneath the sprayfield should be investigated for infiltration from the sprayfield, its water quality characterized, and appropriate action taken if problems are identified.

Organics/Metals

Ecology detected a number of organics in the industrial wastewater and several exceeded the EPA's chronic water quality criteria, although for sprayfield application these criteria do not strictly apply. Copper exceeded the EPA's acute and chronic water quality criteria. Lead exceeded the chronic criteria. An investigation of the need to remove these compounds prior to irrigation should be considered.

REFERENCES

- APHA, AWWA, WPCF, 1992. <u>Standard Methods for the Examination of Water and Wastewater</u>, 17th edition. American Public Health Association, Washington, DC.
- Ecology, 1991. <u>Manchester Environmental Laboratory Users Manual, Third Revision</u>. Washington State Department of Ecology, 1991.
- Ecology, 1993. Whole Effluent Toxicity Testing and Limits. Washington State Department of Ecology, 1993.
- EPA, 1986. Quality Criteria for Water. EPA 440/5-86-001.
- EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 2nd edition. U.S. Environmental Protection Agency, Cincinnati, OH, EPA/600/4-89/001.
- EPA, 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving waters to freshwater and Marine Organisms. Weber, C.I. (ed.), U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH, 4th Edition, EPA/600/4-90/027.
- EPA, 1993. <u>Standards for the Use or Disposal of Sewage Sludge</u>. Environmental Protection Agency, Federal Register 40 CFR Part 257 *et al.*, 1993
- Metcalf and Eddy, 1991. <u>Wastewater Engineering Treatment Disposal Reuse</u>, Third Edition. McGraw-Hill, New York.

Appendix A - Sampling Stations Descriptions - Yakima STP, 1992

Inf-R	Influent in right channel looking downstream (West side) - Ecology grab collected at the flow splitter upstream of the primary clarifiers.
Inf-L	Influent in left channel looking downstream (East side) - Ecology grab collected at the flow splitter upstream of the primary clarifiers.
Inf-E-R	Influent wastewater in the right channel (West side) - Ecology composite collected at the flow splitter upstream of the primary clarifiers.
Inf-E-L	Influent wastewater in the left channel (East side) - Ecology composite collected at the flow splitter upstream of the primary clarifiers.
Inf-Y	Influent wastestream in the right channel (West side) - Yakima composite sample collected at the flow splitter upstream of the primary clarifiers.
Ef	Effluent from the end of chlorine contact chamber - Ecology collected grab just before weir overflow.
Ef-E	Effluent out of chlorine contact chamber - Ecology composite collected before the weir overflow.
Ef-Y	Effluent out of chlorine contact chamber - Yakima composite collected before the weir overflow.
Ef-GC	Effluent from the end of the chlorine contact chamber - Ecology grab-composite collected in the AM and PM from just before the weir overflow.
Aer-Mix	Mixed liquor from the aeration basins - Ecology collected grabs.
Sludge	Sludge from digester system - Ecology collected grab from truck just after the centrifuge.
I-Ef	Industrial wastewater - Ecology collected grabs from the wetwell just after screening of influent.
I-Ef-E	Industrial wastewater - Ecology collected composites from wetwell just after screening of influent.
River-1	Yakima River water - Ecology collected grabs from the bank of the Yakima River at the outflow. (Lat/Long: 46°34′40″/120°27′53″)
River-2	Yakima River water - Ecology collected grabs from the bank of the Yakima River downstream from the outfall. (Lat/Long: 46°34′47″/120°27′42″)
Ground	Ground water pumped from beneath aeration basins - Ecology collected one grab sample.

Wastewater from storm pipe under sprayfield - Ecology collected grab from outflow pond.

AgOut

	Type: Date:	Location: Inf-1-R I Type: grab Date: 10/6 Time: 0919	Inf-2-L grab 10/6 0904	grab 10/6 1430	Inf-4-L grab 10/6 1428	Inf-E-R E-comp 10/6-7 @	Inf-E-L E-comp 10/6-7	Inf-Y Y-comp 10/6-7 @	EF-1 grab 10/6 1055	Ef-1-A grab 10/6 1245		Ef-3 grab 10/7 0825	grab 1077 1210	Ef-E E-comp 10/6-7	FF-Y Y-comp 10/6-7
GENERAL CHEMISTRY		2 .	8	1016 1016 1	2	60 t	3	100	410102		10	410	601010	418100	70 0 7
		ш	ע	<u>u</u>	IJ	шшш	шшш	யய	ш		Щ			шшш	ш ш ш
SOLIDS 4 15 A						ш	ш							шι	
		m	m	LU.	ш	ш 🕁 ш	n 🖣 m	EY	ш		ш			ո⊊ռ	Ē
% Solids % Volatile Solids						J	J							,	
OXYGEN DEMAND PARAMETERS BODS						Ä	à	Ì						1	Ĺ
BOD INH BOD35						ıш	ļШ	i W						- W U	ī III
COD TOC (water)		ш	ш	ш	Щ	шш	шш	шш	щ		ш			யய	ШШ
TOC (soil/sed) NUTRIENTS															
Total Persultate N NH3-N						<u>ٿ</u>	<u>а</u>	固山	ш		u			ш 2	<u> </u>
NO2+NO3-N Total-P						ши	і ш с	1 III ET	шш		1 111 111				. w a
LLANEOUS Grease (water)		ů.	ц	ш	ц	l	J	J	J (1		J				
												巨	屳		
		1													
VOC (water) VOC (soil/sed.)		ш	ш	ш	ш				ш		ш				
BNA (water) BNAs (soil/sed)						ш	ш							ш	
r) sed)						ш	Ш							ш	
						ш	W							ц	
©															
SAR PARAMETERS HCO3															
CA Mg c															
DASSAYS															
Salmonid (acute 100%) Microtox (acute)															
Daphnia pulex (acute) Ceriodaphnia (chronic)															
Fathead Minnow (chronic)															
		шшш	шшш	шшш	шшш	шшш	ពាភាពា	шшш	மைய்ய	шшш	ញកា ជា ក	шъшш	шУпп	ш ш ш п	штт
	alysis lysis		Influent												
grab Grab Sample comp Composite Sample A Duplicate grab		∝ ¬@	Right influent channel Left influent channel Composite collection	Right influent channel Left influent channel Composite collection pariod: 08:00-08:00	00.00	Q.									

	Type: Date: Time: Lab Log #:	EI-GC ab-comp 10/6 AM&PM 418168	Aer-Mix-1 / grab 10/6 1105 418169	Aer-Mix-2 grab 10/6 1600 418170	Sudge grab 10/6 1325 418171	grab 10/6 0955 418172	I-Ef-2 grab 10/6 1500 418173	-Ef-3 grab 10/6 0900 418174	JEF-4 grab 10/6 1155 418175	F-Ef-E E-comp 10/6-7 (@	River 1 grab 10/6 1050 418177	River 2 grab 10/6 1050 418178	Ground grab 10/6 1612 418179	AgOut grab 10/6 1115 418180
GENERAL CHEMISTRY	ા .	ш				u				u S	L			
Alkalinity Hardness		1 M M				J	0			பயய	пшш			
SOLIDS 4 TS TNVS										шш				
			шш	шш		2	m			EΕ			ш	
% Solids % Volatile Solids					шш									
OXYGEN DEMAND PARAMETERS BODS	RAMETERS									ĒÝ				
BOD35										ш				
(water)					ц	Ш	Е			шш			В	
NUTRIENTS Total Persultate N					1					ш				
NH3-N NO2+NO3-N										Ē	ш	ш	шш	
MISCELLANEOUS						L	t			ш			Ш	
On and orease (water) F-Coliform MF						Ш	ш	区	Ē					
						u	u	J	Ų.					
VOC (soil/sed)					ш					ú				
BNAs (soil/sed) Pest/PCB (water)					ш					3 LL				
Pest/PCB (soil/sed)					ш									
PP Metals (water)					ш					ш	ш			
SAR PARAMETERS					J									
						шш	шш							
Mg						шш	шш							
BIOASSAYS Salmonid (acute 100%)														
Microtox (acute) Daphnla pulex (acute) Ceriodaphnia (chronic)		шшш												
Fathead Minnow (chronic) FIELD OBSERVATIONS	nic)													
Temperature pH Conductivity Chlorine						шшш	шшш		□ }□	மைய	шшш	шшш	шшш	
gr-comp Grab-composite	mposite				ш>	Ecology sample/analysis	analysis			0	Somposite co	Composite collection period: 08:00-08:00	1: 08:00-08:0	
	Effluent Aeration Basin Mixed Liquor	ior				Yakima River Yakima River Storm pipe under sprayfield	r spravfield -	- Discharge to Yakima River	Vakima Rive	1				

Apendix C - Analytic Procedures and Laboratories, Yakima, 1992.

Parameter IV	MANCHESTER_METHODS	Lab Used
GENERAL CHEMISTRY		
Conductivity (umhos/cm)	EPA, Revised 1983: 120.1	Ecology
Alkalinity (mg/L CaCO3)	EPA, Revised 1983: 310.1	Ecology
Hardness (mg/L CaCO3)	EPA, Revised 1983: 130.2	Ecology
SOLIDS	2.71, 11011000 1000. 100.2	_ ,
TS (mg/L)	EPA, Revised 1983: 160.3	Ecology
TNVS (mg/L)	EPA, Revised 1983: 160.3	Ecology
TSS (mg/L)	EPA, Revised 1983: 160.2	Ecology
TNVSS (mg/L)	EPA, Revised 1983: 160.2	Ecology
% Solids	APHA, 1989: 2540G.	Water Management Laboratories
% Volatile Solids(wet)	EPA, Revised 1983: 160.4	Water Management Laboratories
OXYGEN DEMAND PARAMETER		3
BOD5 (mg/L)	EPA, Revised 1983: 405.1	Water Management Laboratories
BOD INH (mg/L)	EPA, Revised 1983: 405.1	Water Management Laboratories
BOD35 (mg/L)	EPA, Revised 1983: 405.1	Water Management Laboratories
COD (mg/L)	EPA, Revised 1983: 410.1	Water Management Laboratories
TOC (water mg/L)	EPA, Revised 1983: 415.1	Water Management Laboratories
TOC (soil)	EPA, Revised 1983: 415.1	Water Management Laboratories
NUTRIENTS	•	3
Kjeldahl-N	EPA, Revised 1983: 351.3	Water Management Laboratories
NH3-N (mg/L)	EPA, Revised 1983: 350.1	Ecology
NO2+NO3-N (mg/L)	EPA, Revised 1983: 353.2	Ecology
Total-P (mg/L)	EPA, Revised 1983: 365.3	Ecology
MISCELLANEOUS		•
Oil and Grease (mg/L)	EPA, Revised 1983: 413.1	Ecology
F-Coliform MF (#/100mL)	APHA, 1989: 9222D.	Ecology
T-Coliform MF (#/100mL)	APHA, 1989: 9222B.	Ecology
ORGANICS		
VOC (water-ug/L)	EPA, 1986: 8260	Sound Analytical Services
VOC (soil-ug/kg)	EPA, 1986: 8240	Sound Analytical Services
BNAs (water-ug/L)	EPA, 1986: 8270	Sound Analytical Services
BNAs (soil-ug/kg)	EPA, 1986: 8270	Sound Analytical Services
Pest/PCB (water-ug/L)	EPA, 1986: 8080	Sound Analytical Services
Pest/PCB (soil-ug/kg)	EPA, 1986: 8080	Sound Analytical Services
METALS		
PP Metals (water)	EPA, Revised 1983: 200-299	Ecology
PP Metals (soil/sed)	EPA, Revised 1983; 200-299	Ecology
SAR PARAMETERS		
HCO3 (mg/L)	EPA, Revised 1983: 120.1	Ecology
Ca (mg/L)	EPA, Revised 1983: 200-299	Ecology
Mg (mg/L)	EPA, Revised 1983: 200-299	Ecology
Na (mg/L)	EPA, Revised 1983: 200-299	Ecology
BIOASSAYS		
Salmonid (acute 100%)	Ecology, 1981.	Parametrix, Inc.
Microtox (acute)	Beckman, 1982	Parametrix, Inc.
Daphnia sp. (acute)	ASTM, 1986	Parametrix, Inc.
Ceriodaphnia (chronic)	EPA 1989: 1002.0	Parametrix, Inc.
Fathead Minnow (chronic)	EPA 1989: 1000.0	Parametrix, Inc.

METHOD BIBLIOGRAPHY

APHA-AWWA-WPCF, 1989. Standard Methods for the Exanination of Water and Wastewater, 17th Edition.

ASTM, 1986: E1193. Standard Guide for Conducting Life Cycle Toxicity Tests with Daphnia magna. In: Annual Book of ASTM Standards, Water and Environmental Technology. American Society for Testing and Materials, Philadelphia, Pa.

Beckman Instruments, Inc., 1982. Microtox System Operating Manual.

Ecology, 1981. Static Acute Fish Toxicity Test, WDOE 80–12, revised July 1981.

EPA, Revised 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79–020 (Rev. March, 1983).

EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd. ed.,November, 1986.

EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms. Second edition. EPA/600/4-89/100.

Appendix D - Priority Pollutant Cleaning Procedures - Yakima, 1992.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. wash with laboratory detergent,
- 2. rinse several times with tap water,
- 3. rinse with 10% HNO₃ solution,
- 4. rinse three (3) times with distilled/deionized water,
- 5. rinse with high purity methylene chloride,
- 6. rinse with high purity acetone, and
- 7. allow to dry and seal with aluminum foil.

-
Φ
O
a
^

Location:	Inf-1-R	Inf-2-L	Inf-3-R	_	Ef-1	EI-Z	Slndge		I-Ef-2
Type:	grab	grab	grab		grab	grab	grab		grab
Date:	10/6		10/6		10/6	10/6	10/6		10/6
Time:	0919	0904	1430		1055	1525	1325		1500
Lab Log#:	418155	418156	418157		418162	418163	418171	418172	418173
VOA Compounds	(/ng/L)	(/ng/L)	(µg/L)		(ng/L)	(/mg/L)	(µg/Kg-dry)	(/ng/l	(µg/L)
Chloromethane	20 U	⊃	20 U	20 U	20 U	20 U	س	J 20 U	20 U
Bromomethane			20 U	20 U	20 U	20 U		20 U	20 U
Vinyl Chloride	20 U	20 C	20 C	20 Č	J 20	20 O	ب ا	20 U	20 U
Chlóroethane	20 U		20 U	20 U	20 U	20 U	2000 U	20 U	20 U
Methylene Chloride	61	110	113	105	73	31		409	406
Acetone	24 J	46 J	و2 کا	68	L 29	100 U	Γ	42 J	44 J
Carbon Disulfide	10 U	13	14	10		10 U	۲	37	38
1,1-Dichloroethene	5 5	10 O	10 O	- O-	10 U	10 U		10 U	10 U
1,1-Dichloroethane	10 C	10 U	70 C	⊃ ¢	J 01	10 C	_	_ 10 €	10 U
1,2-Dichloroethene (total)	10 U	10 U	10 U	10 U	10 U	10 U	ب	10 U	10 U
Chloroform	F.6 J	6.4 J	9.8 U	13	10 U	10 O	r	5.2 J	4 J
1,2-Dichloroethane	10 U	10 U	10 OL	10 01		10 U	٢	10 U	10 U
2-Butanone (MEK)	20 U	20 C	50 U	20 U	20 U	20 U	_	20 U	12 J
1,1,1-Trichloroethane	- - -	10 U	10 U	10 U		10 U	_	10 OF	10 U
Carbon Tetrachloride	10 U	10 ∪		2.4		10 U	۰	10 U	10 U
Vinyl Acetate	50 U	50 U	20 ∩	20 0		50 U	ر	50 U	50 U
Bromodichloromethane	10 U	D 01	∩ 01	70 C		D 01	_	10 U	10 U
1,2-Dichloropropane	10 U	10 C	10 U	10 U		10 C	_	10 C	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U	٠	10 U	10 U
Trichloroethene	10 U	10 U	10 U	10 U	10 U	10 U		10 U	
Dibromochloromethane	10 U	10 U	10 U	10 U	10 U	10 U	_	10 U	
1,1,2-Trichloroethane	10 U	다 -	0 م	10 U	10 U	10 Ot	1000 U	유	10 U
Benzene	10 U	10 U	10 U	10 U	10 U	10 U	_	10 U	
trans-1,3-Dichloropropene	10 U	10 O	10 U	10 U	10 U	10 U	_	고 우	
Bromoform	10 U	T		70 U	700	10 U	~	10 U	
4-Methyl-2-Pentanone	-			50 U	O 09	20 20	_	20 C	
2-Hexanone	10 U	5 ⊃		10 U	10 U	10 C	_	10 O	
Tetrachloroethene	10 U	ے 20	2.9 J	5.3	0 OF	10 O	_	10 U	
1,1,2,2-Tetrachloroethane	10 U	, ⊃ 01	10 U] 10 10 10	J 01	10 U	_	∩ 01	
Toluene	10 U	10 U	10 U	10 U	10 U	10 C		10 U	
Chlorobenzene	10 U	10 U	10 U	10 U	U 01	10 U	7	10 U	10 U
Ethylbenzene	10 U	10 U		7	10 U	10 U	•	10 U	10 U
Styrene	10 U	10 U	10 U	10 U	J0 1	10 U	_	10 U	10 U
	-	- - -	<u> </u>	25	-	_	-	=	= +

The analyte was not detected at or above the reported result.

The analyte was positively identified. The associated numerical result is an estimate. Centrifuge sludge extract influent Effluent Grab sample.

Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Sludge Sludge Inf EF grab L L R

		III-F-L	Ef-E	Sludge	I-Ef-E
Type:	E-comp E-comp	dmo	E-comp	grab	E-comp
Date:		10/6-7	10/6-7	10/6	10/6-7
Time:	©	@	©	1325	©
Lab Log#:	418159 418	418160	418166	418171	418176
BNA Compounds	m) (7/6m)	(ng/L)	(πg/L)	(ug/Kg-dry)	(\na/L)
Phenol	01 01	n c		3700 J	10 J
Bis(2–Chloroethyl)Ether	כ				10 U
2-Chlorophenol	Þ			8000 U	
1,3-Dichlorobenzene	D	D C	10 U	8000 U	10 U
1.4-Dichlorobenzene	2.2 \ 0.8		P 9.0	8000 J	L 01
Benzyl Alconol) -			16000 U	20 U
#\z-vicinorous non-zene	.) :
Z-Metnylphenol	-		7 3		
bis/z+cniorosopropyl) triner		ɔ [)	8000 U	
4-Methylphiello N Mittoo din Dromdomino	 > =			2200 3	C 01
Not the Cool of th	, > =) <u>-</u>) = C	0 0000) <u> </u>
Nifrobanzene	, =			8000	
is in a flow of a first section of the property of the propert	· -		_	8000 []) _
2-Nitrophenol				8000	
Z.4-Dimethylphenol				8000 11	2 0
Benzoic Acid		PD (40000 UJ	77) 6
Bis(2-Chloroethoxy)Methane					
2,4-Dichlorophenol	10 OL 10	n (10 U
1,2,4-Trichlorobenzene	10 U 10	n (10 O		10 U
Naphthalene	2. T.	<u></u>	10 U	0008 U	10 U
4-Chloroaniline	1.4 J 1.4	L	L ∩ 02	1900	20 J
Hexachlorobutadiene	þ			0008 n	
4-Chloro-3-Methylphenol	>	D		16000 U	20 U
2-Methylnaphthalene	ე 			O008	ე 01
Hexachlorocyclopentadiene -	3 :				10 UJ
2,4,6-Trichlorophenol	> :			8000 U	10 U
2,4,5-i richlorophenol	> :				10 U
Z-Chioronaphthalene) :			D 0008) - 10 - 10
z-Initroaniine Di	> :				O 09
Dimemyi Entidate Acananhthylana))	9000 11 0000) - -
2 6-Dinitrotoliume				0 0000	
	20 U				20 = 2
Acenaphthene	01 01 01			8000	
U The analyte was not detected at or above the reported result. I The analyte was notified the associated numerical result is an astimate.	reported result.	Sludge	1 4 8		
U The analyte was not detected at or above the report	reported estimated result.		Grab sample.		
	•	(e)	Composite collection times: 08:00-08:00.	nes: 08:00-08:00.	
EF Effluent		Ш	Ecology sample.		
L Left side of channel in direction of flow.					

E-comp E-	Find E-R Inf E-L Find P						
E-comp E-comp E-comp Grab Grab Grap Grab Grap Grab Grap Grap Grap Grap Grap Grap Grap Grap	E-comp E-comp Grad 196-7 106-7	Location:	1	nf-E-L	中田	Sludge	1-Ef-E
418165 418166 418166 418166 418166 418166 418166 418171 (\(\alpha\beta\beta\beta\beta\beta\beta\beta\bet	106-7 106-	Type:	_	-comp	E-comp	grab	E-comp
(4911) (4	## 1925 ## 18160 ## 1816	Date:	10/6-7	10/6-7	10/6-7	10/6	10/6-7
118150 118160 118160 118160 118160 118171	18156 18180 18180 18181 18180 18181 1818	Time:	©	@	@	1325	· @
(vg/L) (vg/L) (vg/Kg-dry) (vg/	(vg/L) (vg/L) (vg/L) (vg/L) (vg/Kg-dry)	Lab Log#:	418159	418160	418166	418171	418176
56 U 56 U 10 U 1	So U So U A0000	3NA Compounds	(ng/L)	(µg/L)	(mg/L)	(µg/Kg-dry)	(ng/L)
10 U	10	,4-Dinitrophenol					
10	10					40000	
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	Dibenzofuran 7 4-Tinitrofoluene				D 0008	
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	i, t-Diminosoluente Diatro Phthalata				8000	
\$6 U 50 U 50 U 40000 U 50 U 5	10	-Chlorophenyl Phenylether		10 01	2.5. 10 U	0008 ∩ 0008	
50 U 50 U 40000 U 400000 U 40000 U 400	50 U 50 U 40000 UJ 50 U 40000 UJ 50 U 40000 UJ 50 U 50 U 40000 UJ 50 U 50 U 700 U 50 U 700 U	fluorene				8000 U	
56 UJ 50 UJ 50 UJ 48 10 U 40000 UJ 0.8 10 U 10 U 10 U 1700 J 10 U	56 UJ 50 UJ 50 UJ 40000 UJ 50 UJ 40000 UJ 10 U 20 U 20 U 10 U					40000 U	
18	18	.6-Dinitro-2-Methylphenol				40000 UJ	
10 10 10 10 10 10 10 10	10	V-Nitrosodiphenylamine	18	48		1700 J	0.8 J
10 U 10 U 20 U 200	50 U 10 U 10 U 50 U 50 U 50 U 50 U 50 U	-Bromophenyl Phenylether				D 0008	10 01
50 U 50 U 40000 U 10 U 10 U 10 U 10 U 10 U 10	10 150 U 40000 U 50 U 10 U	lexachlorobenzene				8000 U	O 01
10 U	10 U	entachlorophenol				40000 U	50 U
10 U 10 U 10 U 82 U 27000 U 10 U 10 U 10 U 8000 U 10 U 10 U 10	10 U 43 U 27000 U 10	henanthrene				270 J	10 U
10 10 10 10 10 10 10 10	10 U 43 U 82 U 27000 10 10 U 10 U 10 U 10 U 10 U 10 U 10	nthracene				8000 U	
10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	n-n-Butyl Phthalate				27000	
10 U	10	luoranthene) (O 0008	
20 U 20 U 10 U 10 U 10 U 10 U 10 U 10 U	teletected at or above the reported estimated result: 10	yrene	- 1	10 0) 0 1 1	8000 U	10 O
20 U 20 U 1600 U 16000 U 16000 U 1 10 U 16000 U 1 10 U 17000 U 1 10 U 1700 U 1700 U 170	10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	utylbenzyl Phthalate	100	8	 	2000	P. 9
10 U 10 U 8000 U 10 U 10 U 10 U 8000 U 10 U 1	10 U	,3'-Dichlorobenzidine			50 ∩ 20 ∩	16000 U	20 U
10 U 10 U 8000 U 10 U 10 U 10 U 10 U 10	10	enzo(a)Anthracene) (2)	0008) (
1	t detected at or above the reported estimated result. In direction of flow.	inrysene	- 1	- 1) 0 1	8000 U	10 0
10 U 3000 U 10 U 10 U 8000 U 10 U 10 U 8000 U 10 U 1	s not detected at or above the reported result. 10	(s/Z=Ethylnexyl) Futnalate	30 V	31		17000	21
10 U	s not detected at or above the reported estimated result. Sludge Centrifuge sludge extract spositively identified. The associated numerical result. Sludge Composite sample. Sludge Composite sample. Composite collection times: 08:00-08:00. E Ecology sample.	II—n—Octyl Phthalate		3.4 J	O 0.	0008	
10 U	s not detected at or above the reported estimated result. Sludge Centrifuge sludge extract grab grab sample. Sludge Composite collection times: 08:00-08:00. E Ecology sample.	enzo(b)=iuoranthene) (3000 C	
10 U 0000 U 10 U 8000 U 10 U 10 U 8000 U 10 U 1	s not detected at or above the reported result. Sludge Centrifuge sludge extract s positively identified. The associated numerical result. Sludge Centrifuge sludge extract grab Grab sample. Sludge Centrifuge sludge extract grab Grab sample. E Ecology sample. E Ecology sample.	enzo(a)Pyrano			0 01	8000 C	
10 U 10 U 10 U 10 U 8000 U U	s not detected at or above the reported result. Sludge Centrifuge sludge extract spositively identified. The associated numerical result is an estimate. comp Composite sample. Snot detected at or above the reported estimated result. Goodposite collection times: 08:00–08:00. E Ecology sample.	ndeno(1,2,3-cd)Pvrene	_ > c	ા	2 5	2000	
10 U 10 U 10 U 10 U	s not detected at or above the reported result. Sludge Centrifuge sludge extract spositively identified. The associated numerical result is an estimate. comp Composite samples. Snot detected at or above the reported estimated result. (a) Composite collection times: 08:00–08:00. E Ecology sample.	ibenzo(a,h)Anthracene) O O.) O OF		9000 U	
	The analyte was not detected at or above the reported result. The analyte was positively identified. The associated numerical result is an estimate. comp The analyte was not detected at or above the reported estimated result. Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow.	senzo(g,h,i)Perylene	10 U	10 O	10 U	8000 U	10 U
	Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow.		estimated result.	grab	ab sample.		
The analyte was not detected at or above the reported estimated result.	Effluent Left side of channel in direction of flow. Right side of channel in direction of flow.				mposite collection times:	08:00-08:00	
The analyte was not detected at or above the reported estimated result.	Left side of channel in direction of flow. Right side of channel in direction of flow.				ology sample.		
The analyte was not detected at or above the reported estimated result. Effluent Effluent							
The analyte was not detected at or above the reported estimated result. Cffluent Effluent Effluent Expression of flow.							

Type:	Totalion: Infe-R Infe-L Fig.		
Type: F-comp F-	Type: House E-comp E-com	Sludge	1-Ef-E
Date: 1006-7 1006-7 1016-7 10	Date:	grab	E-comp
Time:	Time:	10/6	10/6–7
Lab Log#: Lab	Lab Log#: Lab	1325	@
Head Compounds Continue C	Heart Control Contro	418171	418176
SHC Correction of the correct	Hercenter of the control of the cont	a/Ka-drv)	("(מ'/)
HC (Lindane)	HC (Lindane) 1001 U 0010 U 0010 U 0011 U 00	17	(1.62)
Helc (Lindane)	Head of the panel in direction of flow. Comparison of the comp		
HC (Lindane)	HC		
HC (Lindane)	HC (Lindane) -BHC (Lindane)	0.17	
PHC (Lindane)	Continuence	0.01 U	
December	December Column		
D	D		_
Feat	FE		
The control of the	The state of channel in direction of flow. Constructions and page extract comp Construction of flow. Construction of f	0.01 U	
Hamiltonian Cool U Cool	The paralyte was not detected at or above the reported result. Cont		
Iffan I Figure 6.01 U 0.01 U 0.01 </td <td> Itan Itan </td> <td>-</td> <td></td>	Itan	-	
Iffan II COT U	Ifan I		0.05
Han Sulfate	Ifan Sulfate		710
Aldehyde 0.01 U	Adehyde Ade		
Aldehyde O.01 U 0.01 U	Aldehyde Colin		
0.01 U 0.	boxide 0.01		
0.01 U 0.	0.01 U 0 0.01 U U 1 U 0 0.01 U 0 0.01 U U 1 U 0 0.01 U 0 0.01 U U 0 0.01 U U 0 0.01 U)
0.01 U 0.02 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 1.0 U 1.	0.01 U 0.02 U 0.		
0.01 U 0.02 U 0.	0.01 U 0.01 U 0.01 U 0.02 U 0.03 U 0.03 U 0.04 U 0.		T
0.02 U 0.1 U 1.0	0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.01 U 0.1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U		
	0.1 U 0.1 U 0.1 U 0.1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U		
	1 U		
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	-	, , , , , , , , , , , , , , , , , , ,
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	_ _	-
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1.0	0.1
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	J C	>
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	ם כ	
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	J -	D
	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 O	
	U The analyte was not detected at or above the reported result. Influent L Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge ge Centrifuge studge extract p Composite samples.) 1	1 0
	The analyte was not detected at or above the Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples.	n I	7
Inflient			
Influent			
Influent Effluent Influent			
Influent Effluent Left side of channel in direction of flow.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples. Grab sample.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples. Grab sample. Grap scollection times: 08:00-08:00			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples. Grab sample. Composite collection times: 08:00–08:00.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples. Grab sample. Composite collection times: 08:00–08:00. Ecology sample.			
Influent Effluent Left side of channel in direction of flow. Right side of channel in direction of flow. Industrial discharge Centrifuge sludge extract Composite samples. Grab sample. Composite collection times: 08:00–08:00. Ecology sample.			

Location: Type: Date: Time: Lab Log#: Total Recoverable Metals Hardness = 75	Inf-F-B Inf-F-				
Hardness = 75		<u> </u>	Sindge		River 1
Hardness =	ய்	E-comb	grab	E-comp	grab
Hardness =	10/6-7 10/6-7	10/6-7	10/6	10/6-7	10/6
Hardness =	©	@	1325	@	1050
Hardness =	418159 418160	418166	418171	418176	418177
	(\mayL) (\mayL)	(/\dag{\makeps})	mg/Kg-dry	(mg/L)	(µg/L)
	2.4 P 1.7 P	1.6 P	43.7	1.5 U	1.5 U
1		 - -	0.14 P	0 •	
	1.92 0.81 B	0.14 PB	6.18	0.61 B	
	5 U 5.1 P	11 P	33.9	∴ F	2
	87.8 82.9		851 E	518	
		33 D		4 1 P	
		- 10	- 10		
] > =		200) = - ç) =
	2 6	2 (5.0.0	_	2 (
			3.55		ာ : ၀၄ '
:	_	0.96 P	32.8 N		0.5
	D	2.5 ∪		2.5 U	2.5 U
	227 204	51.9 U	1290	110 U	12 P
Analyte was found in the analytical method blank, indicating the sample may have been contaminated. Reported result is an estimate because of the presence of interference. For metals analytes the spike sample recovery is not within control limits. The analyte was detected above the detection limit, but below the established minimum quantitation limit, but The analyte was not detected at or above the reported result. Receiving water: Yakima River.	pnis bnoo	in direction of flow.			